
Automated Simplification of Large Symbolic

Expressions

David H. Bailey

Lawrence Berkeley National Laboratory,
Berkeley, CA 94720

Jonathan M. Borwein

Centre for Computer Assisted Research Mathematics and its Applications (CARMA),
Laureate Professor, Univ of Newcastle, Callaghan, NSW 2308, Australia and Distinguished

Professor, King Abdul-Aziz Univ, Jeddah.

Alexander D. Kaiser

Courant Institute of Mathematical Sciences, New York University,
New York, NY 10012

Abstract

We present a set of algorithms for automated simplification of constants of the form
P

i αixi with
αi rational and xi complex. The included algorithms, called SimplifySums and implemented in
Mathematica, remove redundant terms, attempt to make terms and the full expression real,
and remove terms using repeated application of the integer relation detection algorithm PSLQ.
Also included are facilities for making substitutions according to user-specified identities. We
illustrate this toolset by giving some real-world examples of its usage, including one, for instance,
where the tool reduced a symbolic expression of approximately 100,000 characters in size enough
to enable manual manipulation to one with just four simple terms.

Key words: Simplification, Computer Algebra Systems, Experimental Mathematics, Error
Correction

? Supported in part by the Director, Office of Computational and Technology Research, Division of
Mathematical, Information, and Computational Sciences of the U.S. Department of Energy, under con-
tract number DE-AC02-05CH11231. (David H. Bailey)

Email addresses: dhbailey@lbl.gov (David H. Bailey), jonathan.borwein@newcastle.edu.au
(Jonathan M. Borwein), adkaiser@gmail.com (Alexander D. Kaiser).

URLs: http://crd.lbl.gov/~dhbailey/ (David H. Bailey), http://carma.newcastle.edu.au/jon/

Preprint submitted to Elsevier 30 August 2012

1. Introduction

A common occurrence for many researchers who engage in computational mathemat-
ics is that the result of a Mathematica or Maple operation is a very long, complicated
expression, which although technically correct, is not very helpful; only later do these
researchers discover, often indirectly, that in fact the complicated expression they pro-
duced further simplifies, sometimes dramatically, to something much more elegant and
useful. Such instances are to be expected, given the limitations of any symbolic comput-
ing package, for any of a number of reasons, including the difficulty of recognizing when
a given subexpression is zero.

Such instances are closely related to the problem of recognizing a numerical value as a
closed-form expression. In this case, researchers have used integer relation-finding algo-
rithms such as the PSLQ algorithm (Bailey and Broadhurst, 2000) to express the given
numerical value as a linear sum of constants or terms. In both instances, researchers seek
as simple a closed-form expression as possible. Such simplified closed-form expressions are
highly desirable, both in mathematical research and in problems, say, from mathematical
physics.

The importance of closed forms is described in (Borwein and Crandall, Accepted May
2010), and examples of such work are described in (Bailey et al., 2010b) and (Borwein
et al., 2010).

We present herein a software package SimplifySums for the simplification of constants
of the form

∑
i αixi, where each αi is rational and each xi real or complex. Such constants

frequently arise in looking for closed forms for integrals or sums, and are frequently large
and machine-generated by symbolic mathematics software such as Mathematica or Maple.

Implemented in Mathematica, the package includes a focused set of tools for simplifi-
cation of such constants. The package is able to remove redundant constants, opposites
and conjugates, symbolically, numerically or both. It can simplify complex terms, which
is useful if some xi are complex yet the whole constant is real. The package uses symbolic
algebra to apply the integer relation detection algorithm PSLQ repeatedly and utilize
results expression with exact, rational number arithmetic. It also contains code to apply
substitutions, so the user may specify identities or substitutions they would like per-
formed. The tools can be accessed through a convenient, simple function interface. Users
also have access to the individual functions that can be customized.

The criterion to decide which version of an expression is simpler is straightforward
— a sum that has fewer terms is simpler. 1 All the algorithms (with the exception of
substitution) only process the rational coefficients αi, so an expression

∑m
i=1 αixi is

simpler than
∑n
i=1 βixi if m < n. This is in contrast to the general case discussed in

(Carette, 2004), where the question of which version of a general expression is considered
and formalized.

The tools have proven quite effective. Many computer-generated constants have many
of the simple redundancies described above. The techniques using integer-relations are
general and reliable, provided numerical results are used with appropriate caution. The
substitutions allow the user to apply specific identities automatically. This will allow them
to use identities that arise repeatedly in particular work, but are not in Mathematica.

(Jonathan M. Borwein), http://hpcrd.lbl.gov/~adkaiser/ (Alexander D. Kaiser).
1 For short expressions this may occasionally lead to less elegant presentation; for longer ones it seems

highly desirable.

2

Note also that the restriction to sums is very general — no limit is placed on each xi,
only that it must evaluate to a real or complex number, so each xi may be arbitrarily
complicated. Each term will be treated as a single constant by all parts of the code, with
the exception of substitutions.

The remainder of the paper is structured as follows. In Section 2 existing literature
on simplification and simplification in current CAS is discussed. In Section 3 the general
structure of SimplifySums is described. Precise descriptions of the package are relegated
to an Appendix (Section 6). In Section 4 we give a variety of examples and conclude in
Section 5 with some discussion of future research directions.

Note that all tests were performed on a stock MacBook Pro with a 2.53 GHz Intel
Core 2 Duo processor and 4 GB of RAM using Mathematica 7.01.

2. Related Literature and Previous Work

There are two central questions to consider when designing a simplification algorithm.
First, what does it mean for an expression to be simpler than another? Second, given a
constant, what algorithms can be applied to make the expression simpler?

2.1. Simplification in the literature

The paper (Carette, 2004) provides a formal description of simplification. The author
discusses, using ideas including Kologorov complexity and minimum description length,
a method for defining whether a version of an expression is more simple than another.
The author also discusses use of this formalism to make practical decisions on simplifi-
cation of particular expressions and discusses the relationship of his formalism and the
simplification algorithms included with Maple. Notably, the author also discusses the lack
of available literature, both on formalism and practical methods for simplificaion: “But
if one instead scours the scientific literature to find papers relating to simplification, a
few are easily found: a few early general papers... some on elementary functions... as well
as papers on nested radicals... Looking at the standard textbooks on Computer Algebra
Systems (CAS) leaves one even more perplexed: it is not even possible to find a proper
definition of the problem of simplification.”

Searching for methods of simplification reveals many older papers as mentioned in
(Carette, 2004). The papers (Buchberger and Loos, 1982; Casas et al., 1990; Caviness,
1970; Fateman, 1972; Fitch, 1973; Moses, 1971) explore formalism and technique for
simplification. The papers (Caviness and Fateman, 1976; Zippel, 1985) discuss simplifi-
cation techniques specific to expressions involving radicals. The papers (Harrington, 1979;
Hearn, 1971) discuss an earlier CAS called Reduce and some associated algorithms. All
of these provide relevant early discussions of the basic questions here, but there have
been dramatic advances in CAS systems and computing power since they were written.

For more modern techniques, there is a variety of literature on theoretical matters of
simplification, and much on simplification and resolution of specific types of expressions.
The work (Stoutemyer, 2011) describes the philosophy and goals of a practical, effective
simplification algorithm, discussing many heuristics about correctly selecting branches,
merits of particular forms of various expressions and user control and interface. The
papers (Bradford and Davenport, 2002; Beaumont et al., 2003, 2004) primarily address
simplification of elementary functions in the presence of branch cuts, building on the

3

earlier work (Dingle and Fateman, 1994), though none of these address practical issues
associated with large expressions. The work (Schneider, 2008) deals with a specific class
of symbolic sums, in particular the question of finding closed forms of sums dependent on
a parameter, and (Kauers, 2006) approaches the same problem for a more general class of
symbolic sums. The work (Gutierrez and Recio, 1998) describes simplification of highly
specific expressions involving sines and cosines related to inverse kinematic problems. The
work (Monagan and Pearce, 2006) discusses simplification specific to rational expressions
modulo an ideal of polynomial rings. The work (Fateman, 2003) discusses how to check
automatically that a program is correct, and explores certain questions of automatic
simplification that occur in the process.

2.2. Simplification in current CAS

Two of the most commonly used simplification routines are Mathematica’s Simplify
and FullSimplify. The system is closed and proprietary; documentation of the algo-
rithms is not available. Empirically, Mathematica’s Simplify and FullSimplify tend to
get “gummed up” when run on a very large sum and become so slow they sometimes
do not return results for over a day or ever. Neither algorithm returns any intermediate
updates, leading one to wonder after over a day if anything will ever return. It is not
clear why this is true or if there are effective, general ways to combat these problems.
Regardless, these routines were inadequate to simplify constants that arose in work such
as (Bailey et al., 2010b; Borwein et al., 2010).

In Maple (Maple, 2012) more documentation is available but the underlying issues
remain. More details are available about customization of the algorithms, one can in-
struct the algorithm to focus on exponential, logarithmic or rational functions, or specify
expressions in polar coordinates. Notably, one may specify that the given expression is a
constant not dependent on any parameters and issue a preference for reducing the size
of such an expression. In this context, the algorithms will also look for possible cancela-
tions involving the real and imaginary parts of complex subexpressions. The algorithm
also leverages numerical information, but the precise method of this is not stated. Some
information is given in the documentation on nesting strategies, but again, not enough
to truly understand internals of the algorithms.

SAGE (Stein et al., 2012), which is free and open source, relies on another CAS called
Maxima (Maxima, 2011) for simplification algorithms. Documentation for Maxima de-
scribes routines for symbolic summation, simplification of rational functions, and various
facilities for user defined patterns. The SAGE and Maxima documentation do not state
high level simplification strategies, and the source code is difficult to follow.

In general, it seems there is very little modern literature on how to build or implement
a simplification routine for the case of a large, machine generated input constant. When
one has a sum of the form considered here, robustness in the presence of hundreds
or thousands of terms is crucial. Moderate scaling of runtime is not a problem, but
scaling of runtime that leads the user to think nothing is happening for hours on end
is unacceptable. The SimplifySums toolset is designed to address these concerns. By
focusing on sums, we can employ such straightforward and effective algorithms.

In summary, we believe that the current package occupies a useful and currently
unfilled space among existing simplification packages and algorithms.

4

3. The ‘SimplifySums’ package

The package components are as follows, all steps of which can be called separately.
(1) First, redundancy is explored. The code compares all pairs to remove redundant

equalities, opposites and complex conjugates.
• This O(n2) loop is robust at removing such elements, while more generic ap-

proaches may miss such relationships or simply fail to function. The loop repeats
until no change is detected.

(2) Next are decomplexification routines to attempt to make constants real.
• The code looks for terms that are stored as complex but have zero imaginary

part and convert them to real datatypes. It will then evaluate remaining complex
terms and convert them to real if their imaginary parts sum to zero, or remove
them from the sum entirely if both the real and imaginary parts sum to zero.

(3) The code will then run an integer-relation detection step using the algorithm PSLQ
(Bailey and Broadhurst, 2000) to remove dependent terms.
• An integer relation algorithm takes a list of real or complex numbers (x1, x2 . . . xn)

and attempts to find a nontrivial relationship

α1x1 + α2x2 + · · ·+ αnxn = 0 (1)

where each αi is an integer. See (Bailey and Broadhurst, 2000) for details on the
algorithm. If such a relationship is found, the code will use the identity

xi = −
∑
j,j 6=i αjxj

αi
(2)

for some i such that αi 6= 0 to remove xi from the expression.
• By default, 500-digit arithmetic is used in the PSLQ routine, and it is presumed

that an identity that holds to 500-digit arithmetic is in fact a true mathematical
identity, even though in a strict mathematical sense this cannot be guaranteed. If
a higher level of certitude is desired, the precision level can be increased. Relation-
ships with coefficients with too large a norm are thrown out. However, Mathemat-
ica handles rational coefficients with exact arithmetic. Thus, if the relationship
is valid, there are no numerical errors made performing this substitution.

• Since the runtime scaling of this algorithm can be dramatic, by default the code
splits the sum into blocks of 10, 20 then 50 adjacent elements of the sum.

(4) As an alternative to step 3, the code will select a subset of elements according
to user specified categories and apply PSLQ. It will then perform a substitution
according to the relationship found, then repeat this process until no relationships
are found.
• Empirically, relationships are much more likely to be found between terms that

have some mathematical relationship with each other. Thus, the code can examine
subsets that are related according to user provided categories. For example, as
in Example 6 below one may wish to group all terms with logarithms in one
category, dilogarithms in another and so forth.

• As in step 3, within each category PSLQ is run in succession on 10, 20 then 50
adjacent elements of the sum.

5

(5) Zero determination is treated separately. Alternately, the code will also check for
the fortunate circumstance that ∑

i s.t.
αi 6=0

xi = 0. (3)

• That is, some combination of terms in the original equation simply summed to
zero. In this case the appropriate xi are all removed. This is surprisingly common
in practice with machine generated constants. The use of PSLQ reveals such
relationships.

• As mentioned in the previous item, conservative parameters choices are used
to ensure that the relationships discovered are valid, as best as can be checked
numerically.

(6) Also included is a routine that will make a randomized selection of terms, then run
PSLQ repeatedly as above.
• This is not run by default, but still included in the source. This may be effective

when little is known about the individual terms of the sum. If the user has enough
knowledge to determine categories a priori, then using that knowledge is usually
more effective.

(7) The final portion of the code is a substitution package.
• This takes a Mathematica rule, performs pattern matching and substitutes the

user’s desired expression. The Mathematica documentation pages have far more
information on the use of such substitutions. This operates on individual terms of
the sum to maintain robustness on very large sums. This is in contrast to built-in
routines, which the Mathematica documentation says act on “every subpart of
your expression.” Perhaps due to exponential growth in the number of terms in
“every subpart” of a sum, this routine may run slowly.

Remark 1 (Disclaimer). This combination of procedures can be very effective at remov-
ing and simplifying terms. The user must, however, be mindful to consider the difference
between numerical matches and true equality. Depending on the options used, numerical
comparisons may be used repeatedly as ‘truths’ in this package. Such output must, of
course not be taken as proof, only as experimental evidence. But in many applications
this may not matter, and in some others “knowledge is nine-tenths of a proof”. 3

4. Examples and results

We now provide a few examples of the type of manipulations that the package can
usefully perform.

Example 1 (Logarithms). The expression below contains six complex logarithms, some
of which are conjugates and some of which are linearly dependent. The constant is pre-
sented as

C1 : = −1
8
iπ log2

(
2
3
− 2i

3

)
+

1
8
iπ log2

(
2
3

+
2i
3

)
+

1
12
π2 log(−1− i)

+
1
12
π2 log(−1 + i) +

1
12
π2 log

(
1
3
− i

3

)
+

1
12
π2 log

(
1
3

+
i

3

)
. (4)

6

This is automatically reduced to

2
3

Re
(
−1

8
iπ log2

(
2
3
− 2i

3

))
+ Re

(
1
12
π2 log

(
1
3
− i

3

))
, (5)

where three terms have been removed by the simple comparisons, and one more through
use of PSLQ. This in turn can be manually simplified to

− 1
48
π2 log(18) (6)

on taking the principal branch of log on both terms.
Of course, correctly selecting branches require care, so the code does not perform this

particular simplification unless an appropriate rule is set or calls to the Mathematica
simplify functions are made. 3

Example 2 (Arctangents). To illustrate the problem consider the arctangent identity

π

2
− arctan

(√
5
)

= arctan

(
3−
√

5
4

)
+ arctan

(√
5− 2

)
which when expressed in terms of logarithms is

1
2
i

(
log
(

1− 1
5
i
√

5
)
− log

(
1 +

1
5
i
√

5
))

(7)

=
1
2
i

(
log
(

1− 3
4
i+

1
4
i
√

5
)
− log

(
1 +

3
4
i− 1

4
i
√

5
))

+
1
2
i
(

log
(

1 + 2 i− i
√

5
)
− log

(
1− 2 i+ i

√
5
))

+
1
4
i log

(
16 +

(√
5− 3

)2
)

− 1
4
i log

(
16 +

(
3−
√

5
)2
)

+
1
4
i log

(
1 +

(
2−
√

5
)2
)
− 1

4
i log

(
1 +

(
−2 +

√
5
)2
)
.

If presented in just this form, the user or system might well find the simplifications,
but if through intervening steps the logarithms have been rearranged and manipulated,
or additional terms are added, all bets are off. Even if the expression is found, runtime
may increase drastically depending on the algorithms used. Here, SimplifySums reduces
the right hand side to

2 Re

(
−1

2
i log

((
1 +

3i
4

)
− i
√

5
4

))
+ 2 Re

(
1
2
i log

(
(1 + 2i)− i

√
5
))

which can be further reduced to arccot(
√

5), which is equal to the original expression,
with FullSimplify. FullSimplify returns the equivalent 1/4

(
π − arctan

(
4
√

5
))

.
Consider now expression (8) below. It includes all the terms in (7), adding additional

log terms for a total of 23 elements, and has randomly permuting the elements.

7

Re

„
−1

4
log2

„
−1

3
+ i

«
log

„
1

3
− i
««

+ 2Re

„
1

4
log

„
−1

3
+ i

«
log2

„
1

3
− i
««

(8)

+ Re

„
−1

8
iπ log2

„
2

3
− 2i

3

««
− Re

„
−1

8
iπ log2

„
1− i

3

««
+ 2Re

„
−1

8
iπ log2(1− 3i)

«
+ Re

„
−1

4
log

„
1

2
− i

2

«
log2(2)

«
− 2Re

„
1

2
log(1− 2i) log2(2)

«
− 4Re

„
−1

4
log(1− 3i) log2(2)

«
+ Re

„
1

12
π2 log(−1− i)

«
+ Re

„
1

12
π2 log

„
1

3
− i

3

««
+ 2Re

„
−1

2
log

„
1

3
+
i

3

«
log

„
1

3
− i
«

log

„
2

3
− i

3

««
+ 2Re

„
1

2
log

„
1

3
− i

3

«
log

„
2

3
+
i

3

«
log

„
1− i

3

««
+ 2Re

„
1

4
iπ log(1− 3i) log(2− i)

«
+ Re

1

4
log(1− i) log(4) log

−

1− 1√
2

−1− 1√
2

!!
+ log(2) log(4) log

−

1− 1√
2

−1− 1√
2

!

− 1

2
i log

„„
1 +

3i

4

«
− i
√

5

4

«
+

1

2
i log

„„
1− 3i

4

«
+
i
√

5

4

«
+

1

2
i log

“
(1 + 2i)− i

√
5
”

− 1

2
i log

“
(1− 2i) + i

√
5
”

+
1

4
i log

„
1 +

“
2−
√

5
”2
«
− 1

4
i log

„
16 +

“
3−
√

5
”2
«

+
1

4
i log

„
16 +

“√
5− 3

”2
«
− 1

4
i log

„
1 +

“√
5− 2

”2
«

FullSimplify successfully finds a relationship among the logarithms involving arctan-
gents (though not precisely the form above) and reduces the expression to the 14 terms
in (9). However, it took 2259.4 seconds, or approximately 38 minutes to produce the
following result:

− Re

„
1

4
log2

„
−1

3
+ i

«
log

„
1

3
− i
««

+ 2Re

„
1

4
log

„
−1

3
+ i

«
log2

„
1

3
− i
««

(9)

− Re

„
1

8
iπ log2

„
2

3
− 2i

3

««
+ Re

„
1

8
iπ log2

„
1− i

3

««
− 2Re

„
1

2
log

„
1

3
+
i

3

«
log

„
1

3
− i
«

log

„
2

3
− i

3

««
+ 2Re

„
1

2
log

„
1

3
− i

3

«
log

„
2

3
+
i

3

«
log

„
1− i

3

««
− 2Re

„
1

8
iπ log

„
3

5
− i

5

«
log(1− 3i)

«
+
π

4
+

5 log3(2)

8
+

1

12
log(8) log(512) log

“
3− 2

√
2
”
− arctan

“
2−
√

5
”

− 1

2
arctan

„
1

4

“√
5− 3

”«
− 1

2
arctan

“
3 +
√

5
”
− 1

6
π2arccoth(5).

By comparison, running SimplifySums reduced the sum in (8) to 14 terms (all logarithms
in this case) in 1.5 seconds, much faster than 38 minutes for FullSimplify. A further
application of FullSimplify requires 61.3 seconds and reduces the outpuut to the following
8 terms.

8

Re
(
−1

4
log2

(
−1

3
+ i

)
log
(

1
3
− i
))

+ 2Re
(

1
4

log
(
−1

3
+ i

)
log2

(
1
3
− i
))

− 1
3

Re
(

1
8
iπ log2

(
2
3
− 2i

3

))
+ Re

(
−1

8
iπ log2

(
1− i

3

))
+

5 log3(2)
8

− 1
48
π2 log

(
9
2

)
+

1
4

log(2) log(512) log
(

3− 2
√

2
)

+ arccot
(√

5
)
. (10)

This also illustrates another point — FullSimplify is a powerful routine, and sometimes
the best result comes from applying SimplifySums and FullSimplify in combination. 3

Elaborate integrands can arise in high-end use of computer algebra packages. Many
of the following examples involve the polylogarithm Lin(z) :=

∑
k≥1 x

k/kn of order n.
(Note that Li1(x) = − log(1− x).)

Example 3 (Integrals I). Consider the following integral, which arose in connection to
the integral K1 in (Bailey et al., 2010a).∫ π/3

π/6

log
(

2 sin
(x

2

))
dx (11)

Mathematica evaluates the integral symbolically to

1
144

(
− 144i

(
Li2
(

6
√
−1
)
− Li2

(
3
√
−1
))

+ 19iπ2

+ 12π
(

log(2) + 2 log
(
1− 6
√
−1
)
− 2 log

(√
3− 1

)))
. (12)

Here, Mathematica has produced complex subexpressions in evaluating an expression
that is real. This is but one simple example of this phenomenon which occurs regularly
in computing integrals, including the following examples. After applying SimplifySums,
we have

Re
(
−iLi2

(
6
√
−1
))

+ Re
(
iLi2

(
3
√
−1
))
. (13)

In this case, the imaginary parts sum to zero and are removed, removing one term
entirely. PSLQ finds that three remaining terms sum to zero and are removed by zero
determination. In contrast, FullSimplify reduces the original expression to

1
16
i
(
16
(
Li2
(

3
√
−1
)
− Li2

(
6
√
−1
))

+ π2
)

(14)

which has the disadvantage that it appears complex (though is also real) and has one
additional term.

We note that if the user or system is aware of the literature on logsine integrals or the
Clausen function, Cl2(θ) = Im Li2

(
eiθ
)

(Borwein et al., 2012; Lewin, 1981), he or she
will immediately reduce (13) to Cl2(π/3)− Cl2(π/6). 3

Example 4 (Integrals II). In work on integrals arising in the Ising model in ferromag-
metics, we needed to evaluate an integral E5, which started life as 4-D integral (Bailey

9

E5 =

Z 1

0

Z 1

0

Z 1

0

ˆ
2(1− x)2(1− y)2(1− xy)2(1− z)2(1− yz)2(1− xyz)2`

−
ˆ
4(x+ 1)(xy + 1) log(2)

`
y5z3x7 − y4z2(4(y + 1)z + 3)x6 − y3z

``
y2 + 1

´
z2 + 4(y+

1)z + 5)x5 + y2 `4y(y + 1)z3 + 3
`
y2 + 1

´
z2 + 4(y + 1)z − 1

´
x4 + y

`
z
`
z2 + 4z

+5) y2 + 4
`
z2 + 1

´
y + 5z + 4

´
x3 +

``
−3z2 − 4z + 1

´
y2 − 4zy + 1

´
x2 − (y(5z + 4)

+4)x− 1)] /
ˆ
(x− 1)3(xy − 1)3(xyz − 1)3

˜
+
ˆ
3(y − 1)2y4(z − 1)2z2(yz

−1)2x6 + 2y3z
`
3(z − 1)2z3y5 + z2 `5z3 + 3z2 + 3z + 5

´
y4 + (z − 1)2z`

5z2 + 16z + 5
´
y3 +

`
3z5 + 3z4 − 22z3 − 22z2 + 3z + 3

´
y2 + 3

`
−2z4 + z3 + 2

z2 + z − 2
´
y + 3z3 + 5z2 + 5z + 3

´
x5 + y2 `7(z − 1)2z4y6 − 2z3 `z3 + 15z2

+15z + 1) y5 + 2z2 `−21z4 + 6z3 + 14z2 + 6z − 21
´
y4 − 2z

`
z5 − 6z4 − 27z3

−27z2 − 6z + 1
´
y3 +

`
7z6 − 30z5 + 28z4 + 54z3 + 28z2 − 30z + 7

´
y2 − 2

`
7z5

+15z4 − 6z3 − 6z2 + 15z + 7
´
y + 7z4 − 2z3 − 42z2 − 2z + 7

´
x4 − 2y

`
z3 `z3

−9z2 − 9z + 1
´
y6 + z2 `7z4 − 14z3 − 18z2 − 14z + 7

´
y5 + z

`
7z5 + 14z4 + 3

z3 + 3z2 + 14z + 7
´
y4 +

`
z6 − 14z5 + 3z4 + 84z3 + 3z2 − 14z + 1

´
y3 − 3

`
3z5

+6z4 − z3 − z2 + 6z + 3
´
y2 −

`
9z4 + 14z3 − 14z2 + 14z + 9

´
y + z3 + 7z2 + 7z

+1)x3 +
`
z2 `11z4 + 6z3 − 66z2 + 6z + 11

´
y6 + 2z

`
5z5 + 13z4 − 2z3 − 2z2

+13z + 5) y5 +
`
11z6 + 26z5 + 44z4 − 66z3 + 44z2 + 26z + 11

´
y4 +

`
6z5 − 4

z4 − 66z3 − 66z2 − 4z + 6
´
y3 − 2

`
33z4 + 2z3 − 22z2 + 2z + 33

´
y2 +

`
6z3 + 26

z2 + 26z + 6
´
y + 11z2 + 10z + 11

´
x2 − 2

`
z2 `5z3 + 3z2 + 3z + 5

´
y5 + z

`
22z4

+5z3 − 22z2 + 5z + 22
´
y4 +

`
5z5 + 5z4 − 26z3 − 26z2 + 5z + 5

´
y3 +

`
3z4−

22z3 − 26z2 − 22z + 3
´
y2 +

`
3z3 + 5z2 + 5z + 3

´
y + 5z2 + 22z + 5

´
x+ 15z2 + 2z

+2y(z − 1)2(z + 1) + 2y3(z − 1)2z(z + 1) + y4z2 `15z2 + 2z + 15
´

+ y2 `15z4

−2z3 − 90z2 − 2z + 15
´

+ 15
˜
/
ˆ
(x− 1)2(y − 1)2(xy − 1)2(z − 1)2(yz − 1)2

(xyz − 1)2
˜
−
ˆ
4(x+ 1)(y + 1)(yz + 1)

`
−z2y4 + 4z(z + 1)y3 +

`
z2 + 1

´
y2

−4(z + 1)y + 4x
`
y2 − 1

´ `
y2z2 − 1

´
+ x2 `z2y4 − 4z(z + 1)y3 −

`
z2 + 1

´
y2

+4(z + 1)y + 1)− 1) log(x+ 1)] /
ˆ
(x− 1)3x(y − 1)3(yz − 1)3

˜
− [4(y + 1)(xy

+1)(z + 1)
`
x2 `z2 − 4z − 1

´
y4 + 4x(x+ 1)

`
z2 − 1

´
y3 −

`
x2 + 1

´ `
z2 − 4z − 1

´
y2 − 4(x+ 1)

`
z2 − 1

´
y + z2 − 4z − 1

´
log(xy + 1)

˜
/
ˆ
x(y − 1)3y(xy − 1)3(z−

1)3
˜
−
ˆ
4(z + 1)(yz + 1)

`
x3y5z7 + x2y4(4x(y + 1) + 5)z6 − xy3 ``y2+

1)x2 − 4(y + 1)x− 3
´
z5 − y2 `4y(y + 1)x3 + 5

`
y2 + 1

´
x2 + 4(y + 1)x+ 1

´
z4+

y
`
y2x3 − 4y(y + 1)x2 − 3

`
y2 + 1

´
x− 4(y + 1)

´
z3 +

`
5x2y2 + y2 + 4x(y + 1)

y + 1) z2 + ((3x+ 4)y + 4)z − 1
´

log(xyz + 1)
˜
/
ˆ
xy(z − 1)3z(yz − 1)3(xyz − 1)3

˜´˜
/
ˆ
(x+ 1)2(y + 1)2(xy + 1)2(z + 1)2(yz + 1)2(xyz + 1)2

˜
dxdy dz.

Table 1. The E5 integral.

and Borwein, 2011b). We did find a transformation that reduced this to a 3-D integral,
but the resulting 3-D integral is extremely complicated (see Table 1). Just converting
this expression—originally produced in Mathematica—to a working computer program
required considerable ingenuity.

The experimental evaluation for E5 shown in (15) required considerable effort, both

10

computational and analytical. The numerical evaluation of the integral in Table 1 to
240 digits required four hours on 64 CPUs of the Virginia Tech Apple system. Applying
PSLQ to the resulting numerical value (together with the numerical values of a set of
conjectured terms), yielded (15):

E5
?= 42− 1984 Li4

(
1
2

)
+

189
10

π4 − 74ζ(3)− 1272ζ(3) log 2 + 40π2 log2 2 (15)

− 62
3
π2 +

40
3
π2 log 2 + 88 log4 2 + 464 log2 2− 40 log 2.

This has been confirmed to a full 240 decimal places, namely the precision to which
the integral itself was computed, although we do not have a formal proof (nor even a
computer-symbolic proof). The numerical computation of a related integral D5 was even
more demanding than E5. Nonetheless, 18 hours on 256 CPUs of the Apple system at
Virginia Tech produced 500 good digits. An even more extensive PSLQ search was per-
formed on the result, but so far we have not been able to find any simplification for this
problem. Further attempts to simplify this sum produced no additional results, illus-
trating that a result derived with PSLQ frequently may have no additional redundancy.

3

Our tools were initially developed for simplification of constants arising in previous
work on box integrals performed by Bailey, Borwein and Crandall. The paper (Bailey
and Borwein, 2011a) discusses the increasing importance and methodology of such ex-
perimental mathematics work. See (Bailey et al., 2010b) and (Borwein et al., 2010) for
much more detail on these integrals, their calculation and relevance. A family of integrals
crucial to this work is described next:

Example 5 (Integrals III).

J(t) : =
∫

[0,1]2

log(t+ x2 + y2)
(1 + x2)(1 + y2)

dxdy. (16)

Specification of t ≥ 0 provides much more strenuous and interesting examples for this
kind of simplification. As explained in (Borwein et al., 2010; Borwein and Crandall,
Accepted May 2010), for all algebraic t there is in principle a hypergeometric evaluation
of J(t). For t = 0 one may analytically obtain

J(0) =
π2

16
log 2− 7

8
ζ(3). (17)

For t = 1 the initial evaluation for this integral is 210 terms and 12,506 characters in
Mathematica. Application of the default options of the package reduced this to 58 terms
and 3916 characters. 3

Example 6 (Integrals and polylogarithms). A more challenging constant is J(3), also
referred to as K5 in the literature (Borwein et al., 2010). A computation in Mathematica
returned 795 terms, most of which are complex, and 59,040 characters. Our programs

11

reduced this to 127 terms, all of which are real, and 11,539 characters. Consider:

Li3
`

1
2
− i

6

´
2

+
Li3
`

1
2

+ i
6

´
2

− Li3

„
1

2
− i

2

«
− Li3

„
1

2
+
i

2

«
− Li3

„
1

2
− i
«
− Li3

„
1

2
+ i

«

+
Li3
`

1
2
− 3i

2

´
2

+
Li3
`

1
2

+ 3i
2

´
2

− Li3(1− i)− Li3(1 + i)−
Li3

„
i− i√

2
i− 1√

2

«
2

−
Li3

„
−i+ i√

2
−i− 1√

2

«
2

+

Li3

−

(1
2−

i
2)
(
−1+ 1√

2

)
−i− 1√

2

!
2

+

Li3

−

(1
2+ i

2)
(
−1+ 1√

2

)
i− 1√

2

!
2

−
Li3

−

(1
2−i)

(
−1+ 1√

2

)
−2i− 1√

2

!
2

−
Li3

−

(1
2+i)

(
−1+ 1√

2

)
2i− 1√

2

!
2

+

Li3

−

(1
2−

i
2)
(
−1− 1√

2

)
−i+ 1√

2

!
2

+

Li3

−

i
(
1− 1√

2

)
−i+ 1√

2

!
2

−
Li3

„
−i− i√

2
−i+ 1√

2

«
2

+

Li3

−

(1
2+ i

2)
(
−1− 1√

2

)
i+ 1√

2

!
2

+

Li3

i
(
1− 1√

2

)
i+ 1√

2

!
2

−
Li3

„
i+ i√

2
i+ 1√

2

«
2

−
Li3

−

(1
2−i)

(
−1− 1√

2

)
−2i+ 1√

2

!
2

−
Li3

−

2i
(
1− 1√

2

)
−2i+ 1√

2

!
2

−
Li3

−

(1
2+i)

(
−1− 1√

2

)
2i+ 1√

2

!
2

−
Li3

2i
(
1− 1√

2

)
2i+ 1√

2

!
2

+

Li3

−

i
(
1+ 1√

2

)
−i− 1√

2

!
2

+

Li3

i
(
1+ 1√

2

)
i− 1√

2

!
2

−
Li3

−

2i
(
1+ 1√

2

)
−2i− 1√

2

!
2

−
Li3

2i
(
1+ 1√

2

)
2i− 1√

2

!
2

− Li3

„
− 2

−1−
√

2

«

+

Li3

„
−2i−i

√
2

−2i+ 1√
2

«
2

+

Li3

„
2i−i

√
2

2i− 1√
2

«
2

+

Li3

„
−2i+i

√
2

−2i− 1√
2

«
2

+

Li3

„
2i+i
√

2

2i+ 1√
2

«
2

−
Li3
“

2i−2i
√

2

2i−
√

2

”
2

−
Li3
“
−2i+2i

√
2

−2i−
√

2

”
2

− Li3

„
− 2

−1 +
√

2

«
+

Li3

„
− (1

2−i)(−1+
√

2)
−2i−

√
2

«
2

+

Li3

„
− (1

2+i)(−1+
√

2)
2i−
√

2

«
2

+

Li3

„
− (1

2−i)(−1−
√

2)
−2i+

√
2

«
2

+

Li3

„
− 2i(1−

√
2)

−2i+
√

2

«
2

−
Li3
“
−2i−2i

√
2

−2i+
√

2

”
2

+

Li3

„
− (1

2+i)(−1−
√

2)
2i+
√

2

«
2

+

Li3

„
2i(1−

√
2)

2i+
√

2

«
2

−
Li3
“

2i+2i
√

2

2i+
√

2

”
2

+

Li3

„
− 2i(1+

√
2)

−2i−
√

2

«
2

+

Li3

„
2i(1+

√
2)

2i−
√

2

«
2

.

(18)

We had previously manually divided J(3) to segregate the terms with occurrences of

the polylogarithm Lin(z), which appeared of order n ≤ 3. For instance, in (18) we show

only the terms from J(3) involving the trilogarithm (Li3). These terms were extracted us-

ing the included function groupExpressionsByFunctionCategories. Before simplification,

in (18) we have 48 terms, all of which appear complex.

12

After simplification, the result is a much more manageable 13 real terms:

Re

„
Li3

„
1

2
− i

6

««
− 2 Re

„
Li3

„
1

2
− i

2

««
− 2 Re

„
Li3

„
1

2
− i
««

+ Re

„
Li3

„
1

2
− 3i

2

««
− 2 Re(Li3(1− i)) + Re

„
Li3

„
1

12

“
(6− 2i)− 5

√
2
”««

− Re

„
Li3

„
1

18

“
(9 + 2i)− 5

√
2
”««

+ Re

„
Li3

„„
1

2
+
i

6

«
−
√

2

3

««
+ Re

„
Li3

„„
1

2
+
i

6

«
+

√
2

3

««
+ Re

„
Li3

„
1

12

“
(6− 2i) + 5

√
2
”««

− Re

„
Li3

„
1

18

“
(9 + 2i) + 5

√
2
”««

− Li3
“
−2
“

1 +
√

2
””
− Li3

“
−2 + 2

√
2
”
.

Now at the very least, the expression is ‘human readable’. We may note that these
terms comprise mostly the real parts of complex terms. These can be further simplified
manually or using other simplification rules as will be discovered in (Lewin, 1981). As
in Example 1 dealing with complex logarithms, care must be taken to take appropriate
branches of these functions to get correct results. Thus, the code does not handle such
simplifications automatically. The final form found involves terms like those in Example
7, and may be examined in (Borwein et al., 2010). 3

We observe that simple redundancies or branch issues such as illustrated in Example
3 can and will replicate and grow unmanageably as they have in Example 6.

Example 7 (Complexity reduction). Perhaps the most striking closed form this family
of integrals is that of J(2), derived and discussed in (Borwein et al., 2010). This integral
starts at about 100, 000 characters and reduces to only a few dozen characters (four
simple terms):

J(2) =
π2

8
ln (2)− 7

48
ζ (3) +

11
24
πCl2

(π
6

)
− 29

24
πCl2

(
5π
6

)
, (19)

where Cl2 is again the Clausen function Cl2(θ) :=
∑
n≥1 sin(nθ)/n2 (Cl2 is the simplest

non-elementary Fourier series). As in Example 3 it often arises and can be computed
well from Cl2(θ) = Im Li2(eiθ). We challenge the reader to explore the derivation of this
formula using the included tools. 3

5. Future research

Tools such as this may also presage a future when mathematics-rich manuscripts can
be automatically (or at least semiautomatically) checked for validity.

For example, we frequently check and correct identities in mathematical manuscripts
by computing particular values on the LHS and RHS to high precision and comparing
results—and then if necessary use software to repair defects.

As an example, in a study of “character sums” we wished to use the following result
derived in (Borwein et al., 2008):

13

∞∑
m=1

∞∑
n=1

(−1)m+n−1

(2m− 1)(m+ n− 1)3
(20)

?= 4 Li4

(
1
2

)
− 51

2880
π4 − 1

6
π2 log2(2) +

1
6

log4(2) +
7
2

log(2)ζ(3).

Here Li4(1/2) is again a polylogarithmic value. However, a subsequent computation to
check results disclosed that whereas the LHS evaluates to −0.872929289 . . ., the RHS
evaluates to 2.509330815 Puzzled, we computed the sum, as well as each of the
terms on the RHS (sans their coefficients), to 500-digit precision, then applied the PSLQ
algorithm. PSLQ quickly found the following:

∞∑
m=1

∞∑
n=1

(−1)m+n−1

(2m− 1)(m+ n− 1)3
(21)

= 4 Li4

(
1
2

)
− 151

2880
π4 − 1

6
π2 log2(2) +

1
6

log4(2) +
7
2

log(2)ζ(3).

In other words, in the process of transcribing and ‘prettyfying’ (20) into the original
manuscript, “151” had become “51.”

It is quite possible that this error would have gone undetected and uncorrected had
we not been able to computationally check and correct such results. While any such error
may seem trivial, the reliability and integrity of tables and of resources like the Digital
Library of Mathematica Functions (Olver et al., 2012) demand such errors be identifiable
and correctible. The ability to correct may not always matter, but it can be crucial.

We have largely automated tools to validate and correct expressions, contained in a
separate, in progress package titled VerifyEquality. We describe our code and under-
lying heuristic in our final example:

Example 8 (Auto-correction). This example and method arose in checking the paper
(Bailey et al., 2010b) for accuracy. One integral explored is

∆4(−3) =
∫ 1

0

· · ·
∫ 1

0

(
(r1 − q1)2 + · · ·+ (r4 − q4)2

)−3/2
dr1 · · · dr4 dq1 · · · dq4 (22)

This evaluates numerically to ≈ 8.40809. The final closed form of the expression was
expressed in the paper as

−128
15

+
1
63
π − 8 log

(
1 +
√

2
)
− 32 log

(
1 +
√

3
)

+ 16 log 2 + 20 log 3

−8
5

√
2 +

32
5

√
3− 32

√
2 arctan

(
1√
8

)
− 96 Ti2

(
3− 2

√
2
)

+ 32G. (23)

Here G is the Catalan number and Ti2 is a generalized tangent value (another polylog)
(Lewin, 1981).

To check the accuracy of this and many like formulas, the TEX sourcecode for the
closed form was imported into Mathematica. Using the import features is faster and less
prone to transcription errors compared to typing the closed form in Mathematica format.
Then the formula itself was evaluated numerically.

14

In this case, the expression evaluated to ≈ −8.2970, indicating an error. PSLQ was
applied to the terms of the sum, which returned

−128
15

+
16
3
π − 8 log

(
1 +
√

2
)
− 32 log

(
1 +
√

3
)

+ 16 log 2 + 20 log 3

−8
5

√
2 +

32
5

√
3− 32

√
2 arctan

(
1√
8

)
− 96 Ti2

(
3− 2

√
2
)

+ 32G. (24)

This expression evaluates to the correct numerical value, and so indicated a transcription
error in the coefficient of π, which changed from “ 16

3 ” to “ 1
63”. Such errors are common

in human transcription and in prettifying of machine-generated expressions, and so we
seek to automate this process. 3

To accomplish this automation, VerifyEquality first imports the TEX sourcecode for
an equation directly from the manuscript using the built in parser. (The file will need
minor manual manipulation to display an equality which can be parsed into sides that
can be evaluated numerically.) The values are computed and compared. If they do not
numerically agree, then PSLQ is run to try to re-extract the true intended relationship.
If this fails, the user is presented with the expression, which can be manually checked for
correct parsing. Then PSLQ can be run again if desired.

A preliminary version is working, but it has some limitations. For example, certain
functions are not automatically interpreted correctly, especially those that are not part
of built-in routines. And differences in typing may cause unexpected parsing errors.

For example, in (23) the term “16 log 2 + 20 log 3” omits parentheses of the argument
of the logarithms for readability. But the parser does not take this into account, and
instead assumes that l, o and g are variables. Upon import this expression becomes (16 ·
2+20 ·3) ·l ·o ·g. This error prevents the tool from being able to repair the relation — e.g.,
by manually changing to log(2) and log(3). But users cannot be expected to dig through
parsed expressions to notice such errors. Thus, improving such facilities is a necessary
goal for publication of this work. A further goal is to be able to automatically extract
formulas from a paper, eliminating the need for users to manually annotate TEX source
files.

Acknowledgements

The authors should like to thank Richard Crandall for his gracious help with sam-
ple constants. All feedback is appreciated. Comments on user experience, results, bug-
reports, and results should be sent to adkaiser@gmail.com.

References

Bailey, D. H., Borwein, J. M., Nov. 2011a. Exploratory experimentation and computation.
Not. Amer. Math. Soc. 58, 1410–1419.

Bailey, D. H., Borwein, J. M., 2011b. High-precision numerical integration: Progress and
challenges. J. Symb. Comput. 46, 741–754.

Bailey, D. H., Borwein, J. M., Broadhurst, D., Zudilin, W., 2010a. Experimental mathe-
matics and mathematical physics. Gems in Exp. Math., Contemp. Math. 517, 41–58.

15

Bailey, D. H., Borwein, J. M., Crandall, R. E., 2010b. Advances in the theory of box
integrals. Math. Comput. 79 (271), 1839–1866.
URL http://dx.doi.org/10.1090/S0025-5718-10-02338-0

Bailey, D. H., Broadhurst, D. J., 2000. Parallel integer relation detection: Techniques and
applications. Math. Comput. 70, 1719–1736.

Beaumont, J., Bradford, R., Davenport, J. H., 2003. Better simplification of elementary
functions through power series. In: Proc. 2003 Int. Symp. on Symb. and Algebr. Comp.
ISSAC ’03. ACM, New York, NY, USA, pp. 30–36.
URL http://doi.acm.org/10.1145/860854.860867

Beaumont, J. C., Bradford, R. J., Davenport, J. H., Phisanbut, N., 2004. A poly-
algorithmic approach to simplifying elementary functions. In: Proc. 2004 Int. Symp.
on Symb. and Algebr. Comp. ISSAC ’04. ACM, New York, NY, USA, pp. 27–34.
URL http://doi.acm.org/10.1145/1005285.1005292

Borwein, D., Borwein, J. M., Straub, A., Wan, J., In press 2012. Log-sine evaluations of
Mahler measures, Part II. Integers.

Borwein, J. M., Chan, O.-Y., Crandall, R. E., 2010. Higher-dimensional box integrals.
Exp. Math. 19 (4), 431–446.
URL http://dx.doi.org/10.1080/10586458.2010.10390634

Borwein, J. M., Crandall, R. E., Accepted May 2010. Closed forms: what they are and
why we care. Not. Amer. Math. Soc.
URL http://www.carma.newcastle.edu.au/jon/closed-form.pdf

Borwein, J. M., Zucker, I. J., Boersma, J., 2008. The evaluation of character Euler double
sums. Ramanujan J. 15, 377–405.

Bradford, R., Davenport, J. H., 2002. Towards better simplification of elementary func-
tions. In: Proc. 2002 Int. Symp. on Symb. and Algebr. Comp. ISSAC ’02. ACM, New
York, NY, USA, pp. 16–22.
URL http://doi.acm.org/10.1145/780506.780509

Buchberger, B., Loos, R., 1982. Algebraic Simplification. In: Buchberger, B., Collins,
G. E., Loos, R. (Eds.), Computer Algebra - Symbolic and Algebraic Computation.
Springer Verlag, Vienna - New York, pp. 11–43.

Carette, J., 2004. Understanding expression simplification. In: Proc. 2004 Int. Symp. on
Symb. and Algebr. Comp. ISSAC ’04. ACM, New York, NY, USA, pp. 72–79.
URL http://doi.acm.org/10.1145/1005285.1005298

Casas, R., Fernández-Camacho, M.-I., Steyaert, J.-M., 1990. Algebraic simplification in
computer algebra: an analysis of bottom-up algorithms. Theor. Comput. Sci. 74 (3),
273–298.
URL http://www.sciencedirect.com/science/article/pii/030439759090078V

Caviness, B. F., Apr. 1970. On canonical forms and simplification. J. ACM 17 (2), 385–
396.
URL http://doi.acm.org/10.1145/321574.321591

Caviness, B. F., Fateman, R. J., 1976. Simplification of radical expressions. In: Proc.
third ACM Symp. on Symb. and Algebr. Comp. SYMSAC ’76. ACM, New York, NY,
USA, pp. 329–338.
URL http://doi.acm.org/10.1145/800205.806352

Dingle, A., Fateman, R. J., 1994. Branch cuts in computer algebra. In: Proc. 1994 Int.
Symp. on Symb. and Algebr. Comp. ISSAC ’94. ACM, New York, NY, USA, pp. 250–
257.
URL http://doi.acm.org/10.1145/190347.190424

16

Fateman, R., 2003. High-level proofs of mathematical programs using automatic differ-
entiation, simplification, and some common sense. In: Proc. 2003 Int. Symp. on Symb.
and Algebr. Comp. ISSAC ’03. ACM, New York, NY, USA, pp. 88–94.
URL http://doi.acm.org/10.1145/860854.860883

Fateman, R. J., 1972. Essays in algebraic simplification. Tech. rep., Cambridge, MA,
USA.

Fitch, J. P., 1973. On algebraic simplification. The Comput. J. 16 (1), 23–27.
URL http://comjnl.oxfordjournals.org/content/16/1/23.abstract

Gutierrez, J., Recio, T., 1998. Advances on the simplification of sinecosine equations. J.
Symb. Comput. 26 (1), 31–70.
URL http://www.sciencedirect.com/science/article/pii/S0747717198902000

Harrington, S. J., 1979. A new symbolic integration system in reduce. The Comput. J.
22 (2), 127–131.
URL http://comjnl.oxfordjournals.org/content/22/2/127.abstract

Hearn, A. C., 1971. Reduce 2: A system and language for algebraic manipulation. In:
Proc. second ACM Symp. on Symb. and Algebr. Manip. SYMSAC ’71. ACM, New
York, NY, USA, pp. 128–133.
URL http://doi.acm.org/10.1145/800204.806277

Kauers, M., 2006. Sumcracker: A package for manipulating symbolic sums and related
objects. J. Symb. Comput. 41 (9), 1039–1057.
URL http://www.sciencedirect.com/science/article/pii/S0747717106000502

Lewin, L., 1981. Polylogarithms and associated functions. North Holland.
Maple, 2012. Maple. Maplesoft, Waterloo ON, Canada.

URL http://www.maplesoft.com/support/help/Maple/view.aspx?path=
simplify/details

Maxima, 2011. Maxima, a computer algebra system. version 5.25.1.
URL http://maxima.sourceforge.net

Monagan, M., Pearce, R., 2006. Rational simplification modulo a polynomial ideal. In:
Proc. 2006 Int. Symp. on Symb. and Algebr. Comp. ISSAC ’06. ACM, New York, NY,
USA, pp. 239–245.
URL http://doi.acm.org/10.1145/1145768.1145809

Moses, J., 1971. Algebraic simplification a guide for the perplexed. In: Proc. second ACM
Symp. on Symb. and Algebr. Manip. SYMSAC ’71. ACM, New York, NY, USA, pp.
282–304.
URL http://doi.acm.org/10.1145/800204.806298

Olver, F. W. J., Lozier, D. W., Boisvert, R. F., Clark, C. W., 2012. NIST Digital Hand-
book of Mathematical Functions.
URL http://dlmf.nist.gov

Schneider, C., 2008. A refined difference field theory for symbolic summation. J. Symb.
Comput. 43 (9), 611–644.
URL http://www.sciencedirect.com/science/article/pii/S0747717108000047

Stein, W., et al., 2012. Sage Mathematics Software (Version 5.2). The Sage Development
Team.
URL http://www.sagemath.org

Stoutemyer, D. R., 2011. Ten commandments for good default expression simplification.
J. Symb. Comput. 46 (7), 859–887, special Issue in Honour of Keith Geddes on his
60th Birthday.
URL http://www.sciencedirect.com/science/article/pii/S0747717110001471

17

Zippel, R., 1985. Simplification of expressions involving radicals. J. Symb. Comput. 1 (2),
189–210.
URL http://www.sciencedirect.com/science/article/pii/S0747717185800146

6. Appendix

6.1. Included Files and Building

Download and unzip the included folder, which contains three Mathematica notebooks.
Open the SimplifySums.nb (available from http://www.carma.newcastle.edu.au/
jon/portal.html) and evaluate all cells in the notebook. Two simple examples are
provided in Example.nb, and an example of using and writing rules is contained in
RuleList.nb.

6.2. Basic usage

The most basic usage of the functions is to call the supplied ‘wrapper’ function with
its default parameters unchanged. Name the constant that is to be simplified x. Then
call

simplifySum[x]
This performs the following steps:

(1) Sets working precision to 500 digits.
(2) Removes terms that are equal, opposites or complex conjugates numerically and

symbolically. Performs the appropriate algebra symbolically to maintain equality
to the original sum.

(3) Converts complex terms that are numerically real to real datatypes.
(4) Checks whether remaining complex terms sum to zero and delete them if so.
(5) Check whether the imaginary part of remaining complex terms sum to zero and

make them real if so.
(6) Repeatedly runs PSLQ on adjacent terms of the sum, removing and replacing terms

each time a relationship is found. Removes all terms in the sum in the event of zero
determination.

(7) Checks accuracy and print a summary between each major step.
(8) Returns the new expression.

6.3. Advanced usage

As shown below, the function simplifySum supports a number of optional arguments
which can be customized to perform the desired combination of simplifications. The func-
tion header is specified as follows (the variables, types and their semantics are displayed
in Table 1).
simplifySum[sum_,

digits_ : 500,
evalNumerically_ : True,
evalSymbolically_ : True,
checkNumericalReals_ : True,
checkSumOfComplex_ : True,
runPslq_ : True,

18

Variable Type Meaning

sum Sum The sum to simplify

digits Integer Number of digits of numerical precision.

Note that this must be large (300-500+) to run
PSLQ successfully.

evalNumerically Boolean Perform numerical comparisons for equality, op-
posites and conjugates.

evalSymbolically Boolean Perform symbolic comparisons for equality, oppo-
sites and conjugates.

checkNumericalReals Boolean Set complex terms with real part numerically zero
to real.

checkSumOfComplex Boolean Remove complex terms if they sum to zero.

Make complex terms real if their imaginary parts
sum to zero.

runPslq Boolean Run PSLQ to simplify with integer relations.

categoryNames False If this variable is False, apply PSLQ in adjacent
blocks.

List of Strings If this variable is a list of strings, separate the
array to categories.

simplifyWithRules Boolean Apply the user supplied list of rules.

ruleList List of rules List of Mathematica rule objects to apply (or False
if no rules).

Table 1. Variables, Types and Meanings

categoryNames_ : False,
simplifyWithRules_ : False,
ruleList_ : False]

Additionally, there are two global variables which are used. The first is outputLevel.
If set to 0, then no output besides warnings and errors is printed. If set to 1, then basic
summaries of the computation are printed at each major step. If set to 2, then more
information about the sub-steps of the computation is printed, in particular, progress
of the redundancy checks and results of each application of PSLQ. This is useful to see
that the code is still proceeding on in the case of a long computation. The second is
$MaxExtraPrecision, which is set to the large value of 1000 and should not be altered
without reason.

An illustrative code snippet follows:

Example 9 (Syntax). The following code was used to generate example 1.
C1 = (1/12)*Pi^2*Log[-1 - I] + (1/12)*Pi^2*Log[-1 + I] +

19

(1/12)*Pi^2*Log[1/3 - I/3] + (1/12)*Pi^2*Log[1/3 + I/3] -
(1/8)*I*Pi*Log[2/3 - (2*I)/3]^2 + (1/8)*I*Pi*Log[2/3 + (2*I)/3]^2

digits = 350;
evalNumerically = True;
evalSymbolically = False;
checkNumericalReals = True;
checkSumOfComplex = True;
runPslq = True;
categoryNames = {"PolyLog[2,", "PolyLog[3,"} ;
simplifyWithRules = False;
ruleList = False;

simplifySum[C1, digits, evalNumerically, evalSymbolically,
checkNumericalReals, checkSumOfComplex, runPslq, categoryNames,
simplifyWithRules, ruleList]

The variable ‘categoryNames’ is used to split the terms for application of PSLQ. When
used, this variable is a list of strings. Each term in the sum will be converted to Math-
ematica InputForm, then checked for substring matches with the terms in the list. Any
function that doesn’t match any supplied categories will be placed into a default category.

In this example, the categories are the ‘dilogarithm’ and ‘trilogarithm’, so those terms
will each have their own category, while all other terms such as ordinary logarithms or
any other known constants will be left in the default category.

The user should take care to consider name collisions, as a term will be placed only
in the first match found or the default. 3

6.4. Final comments

The user may also wish to call the functions individually. Each function has its usage is
documented in its its opening comments. Illustration of how to call individual functions
is included with function ‘simplifySum’.

Remark 2 (Simplification rules). If it is desired to simplify using or more user-defined
rules, a function that applies those rules to each term in the sum is included. Recall that
a Mathematica rule takes the following form:

old_expression :> new_expression /; condition
The condition parameter is optional.

One should consult the examples included with our package or Mathematica’s own
documentation on rules for more detail. As mentioned in section 3, the code here applies
rules to each element of the sum individually. If rules that effect more than one term in
a sum are desired, then use the built in functions which operate on more levels of the
subexpressions.

That said, Mathematica does not divulge much in the way of documentation on its
source code. A direct request for more detail led to the response below:

“The general idea behind the Simplify and FullSimplify heuristics is that they
apply a sequence of transformations, keeping the version of the expression that has the
smallest complexity found so far. This process is repeated at all subexpression levels.

20

There are a few thousand of transformations used (of course most of the trans-
formations apply to relatively narrow classes of expressions). We do not have docu-
mentation describing the transformations or the exact structure of the Simplify and
FullSimplify heuristics.”

An implementation in Maple or SAGE would thus be more flexible. 3

7. Vitae

Can be supplied when and if needed.

21

